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Recently, another approach to study incompressible fluid flow was suggested �S. Ansumali, I. Karlin, and H.
Öttinger, Phys. Rev. Lett. 94, 080602 �2005��—the kinetically reduced local Navier-Stokes �KRLNS� equa-
tions. We consider a simplified two-dimensional KRLNS system and compare it with Chorin’s artificial com-
pressibility method. A comparison of the two methods for steady state computation of the flow in a lid-driven
cavity at various Reynolds numbers shows that the results from both methods are in good agreement with each
other. However, in the transient flow, it is demonstrated that the KRLNS equations correctly describe the time
evolution of the velocity and of the pressure, unlike the artificial compressibility method.
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I. INTRODUCTION

The classical incompressible Navier-Stokes �INS� equa-
tions consist of the equation for the velocity �1�

�tu� + u���u� + ��P =
1

Re
����u�, �1�

and the incompressibility constraint

��u� = 0, �2�

where u is the fluid velocity, P is the pressure, and Re is the
Reynolds number, which characterizes the relative strength
of the viscous and the inertial forces. A well known difficulty
in solving the system �1� and �2� numerically is the absence
of time evolution equation for the pressure. The pressure is
not an independent variable, and it must be determined so
that the incompressibility condition �2� is satisfied. In many
numerical schemes the pressure is obtained by solving a
Poisson equation, which is often the most costly step in
simulations.

Therefore, alternative physical models of incompressibil-
ity have been explored. To date, the most successful ap-
proach is the lattice Boltzmann method �LBM� �2�. The
LBM models are derived from the Boltzmann equation under
the assumption of a low Mach number �3,4�, and provide a
viable alternative to computational fluid dynamics �CFD�
methods for practical applications �5�. However, certain fea-
tures pertinent to the LBM �a relatively large number of
fields and fixed uniform grids� impose limitations, which so
far persist in spite of numerous attempts.

Another technique to avoid solving the Poisson equation
was suggested by Chorin in the classical paper �8�, and is
known as the artificial compressibility �AC� method. The
basic idea of this formulation is to introduce the time deriva-
tive of the pressure into the continuity equation thereby pro-

viding a direct coupling between the pressure and the veloc-
ity. Thus, in this method, the continuity equation �2� is
replaced by

�tP = −
1

�
��u�, �3�

where � is the artificial compressibility parameter, P=� /�
��-density� is the artificial equation of state, and t is an aux-
iliary variable that can be related to the physical time. The
parameter � depends on a problem under study and should be
chosen such that the convergence to the steady state is
reached as fast as possible. For the system �1� and �3� an
artificial sound speed c is defined as c=1 /�� �8�. It is shown
�see, for example, �9� and the references therein� that solu-
tions of the system �1� and �3� converge to steady state so-
lution of INS equations �1� and �2�. In order to compare the
unsteady solution of the AC method with the solution ob-
tained from INS equation, the parameter � should be chosen
sufficiently small. However, in practice, the method is nu-
merically efficient only when moderate values of � is chosen.
For such values of �, the time dependent behavior is not
accurate. Many modifications of the Chorin method were
suggested in order to compute accurate solutions, see for
example �10,11�.

Recently, an alternative thermodynamic description of in-
compressible fluid flows was suggested in the form of kineti-
cally reduced local Navier-Stokes �KRLNS� equations �6�.
The starting point in Ref. �6� was the set of compressible
�local� Navier-Stokes equations for the density �, the mo-
mentum density m=�u, and the negative of the grand poten-
tial G,

G = P −
m2

2�
. �4�

Here, P is the �local� thermodynamic pressure measured in a
comoving �Lagrange� coordinate system. It was shown that,
after the acoustic �density� mode is damped out on the short
time and length scales,
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ta � �KnMaT, la � �KnL , �5�

respectively, where L is a characteristic flow length scale, T
is the flow time scale, one arrives at a coupled system of
equations for the nondimensional momentum density j
=m / ��̄U0�, where �̄U0 is a characteristic momentum �known
from the initial or boundary conditions�, and the nondimen-
sional grand potential density �=G / ��̄U0

2�. In Eq. �5�, the
Mach number, Ma=U0 /cs, is the ratio of the characteristic
flow velocity U0 to the isentropic sound speed cs, and the
Knudsen number, Kn=� / ��csL�, is the ratio of the sound
propagation time L /cs, to the momentum diffusivity time. In
the KRLNS equations �6�, the fast dynamics of the grand
potential becomes singularly coupled to the slow dynamics
of momentum, and the incompressible Navier-Stokes equa-
tions are the quasistationary solution of the KRLNS equa-
tions at small Mach number. Further applications of the
KRLNS equations were presented in Ref. �7�. We extend that
work in the present paper with the aim to: apply the KRLNS
equations for such a well known problem as a flow in a
square cavity and compare the results with those available in
the literature and compare the KRLNS equation with the AC
method for both steady-state �flow in a cavity� and transient
flow problems.

The outline of the paper is as follows. In Sec. II the sim-
plified KRLNS equations are discussed. In Sec. III we res-
cale the KRLNS system �written in terms of momentum-
grand potential density� into the original variables �velocity-
pressure�, in order to have the same units as AC and INS for
a further comparison. In Sec. IV we discuss the numerical
results. Section V concludes the work. In Appendix A, the
details of the numerical method are given while in Appendix
B, a characteristic analysis of the advection term of the
KRLNS equation is presented.

II. KRLNS EQUATIONS

We consider a simplified version of the KRLNS equations
which contain the terms required to reconstruct the INS
equations as the quasistationary approximation. Here we re-
call the steps needed for this simplification as they were for-
mulated in �7�.

The equation for the dimensionless grand potential den-
sity � �Eq. �10� in Ref. �6�� is a diffusion equation with a
source term, which depends solely on the dimensionless mo-
mentum j,

�t� − �Kn
�

Pr
����� = −

1

Ma
��j� + F�j� , �6�

where � is the adiabatic exponent, Pr is the Prandtl number,
and F is the nonlinear part of the source term,

F = Ma��� j�j2

2
� + �Kn	� �

Pr
− 1�����

j2

2
+ ���j�����j��

+ 
 �P

�T



�̄

1

2CV
���j� + ��j�����j� + ��j��

− �1 + 	 −
2

D
����j���j��� . �7�

In the sequel, we neglect the nonlinear term F, and retain
only the leading order source term, Ma−1��j�, Ma
1, re-
sponsible for maintaining incompressibility. As was ex-
plained in Ref. �6�, the use of the grand potential is crucial in
the KRLNS equations since any other choice of the thermo-
dynamic function �e.g., of the entropy S� would immediately
lead to an advection term, j���S, and in a nontrivial coupling
to the momentum equation. Finally, although not strictly nec-
essary, we shall also set Pr=�.

The momentum equation �Eq. �10� in Ref. �6�� reads

�t j� = − Maj���j� − Maj���j� − Ma���� +
j2

2
�

+ �Kn�1 + 	 −
2

D
�����j� + �Kn����j�, �8�

where 	 is a ratio of bulk viscosity to shear viscosity. In �8�
we shall neglect the bulk viscosity term, which is propor-
tional to the divergence, ��Kn����j�, as compared to the
first term in the right-hand side, −Maj���j�. This is consis-
tent with the assumption Kn
Ma under which the KRLNS
equations were derived. Eventually, both these terms could
be neglected because we expect �this was confirmed in �7��
that the divergence itself is of the order Ma. However, we
shall retain the first term in the right-hand side of Eq. �8� in
order to achieve a conservation law form of the momentum
equation which is more convenient from the numerical per-
spective.

With these simplifications, the KRLNS equations are writ-
ten

�t j� = − Ma��	 j�j� + ����� +
j2

2
�� + �Kn����j�,

�t� = −
1

Ma
��j� + �Kn����� . �9�

The KRLNS equations �9� are valid for Kn
Ma
1, on
scales larger than the acoustic scales �5�. They can be con-
sidered as a simplified computational model of the complete
equations, derived in �6�. Note that these simplifications re-
tain the basic physical properties of the equations approach-
ing incompressibility.

III. RESCALING OF VARIABLES

We consider a simplified version of the KRLNS equations
�9�. First, transform Eq. �9� into the original set of variables
�velocity-pressure, u-P�, in order to have the same units as
AC and INS for a further comparison.

t�= tta, x�=xLa, j=m / ��̄U0�, �=G / ��̄U0
2�, where

ta = �Kn
L

cs
, La = �KnL , �10�

G= P−m2 /2�, x= �̄u, Kn=� / ��̄csL� �� is the viscosity coef-
ficient�, and finally, the system obtains a dimensionless form
by x�=x /L ,u�=u /U0 , P�= P / �̄U0

2 ,G�=G / ��̄U0
2� and usual

definition of the Reynolds number Re=LU /�.
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The resulting system of equations is

�tu� = − ���u�u�� − ��P +
1

Re
����u�, �11�

�tG = −
1

Ma2��u� +
1

Re
����G , �12�

which provides the coupling between the velocities and the
pressure, where P and G are related as

P = G +
u2

2
. �13�

Note that Eq. �12� differs from the pressure equation of
the AC method �3� by the term �1 /Re�����G. Retaining this
term is crucial for capturing the correct time dynamics, as it
will be shown in Sec. IV B �see Figs. 4 and 5�.

IV. NUMERICAL RESULTS

We are interested in comparing the AC method with the
KRLNS approach. Therefore, we discretize both systems us-
ing the same numerical method. For this purpose, the explicit
MacCormack scheme is used, as proposed in �12�. This
method is of predictor-corrector type and is second order
accurate both in space and time. In the case of the advection
equation

�U

�t
+

�F�U�
�x

+
�G�U�

�y
= 0,

where U is a vector of conserved variables, the explicit Mac-
Cormack scheme consists of predictor and corrector steps,
respectively:

Ui,j
* = Ui,j

n −
�t

�x
�Fi+1,j

n − Fi,j
n � −

�t

�y
�Gi,j+1

n − Gi,j
n � , �14�

Ui,j
n+1 = 0.5	Ui,j

n + Ui,j
* −

�t

�x
�Fi,j

* − Fi−1,j
* � −

�t

�y
�Gi,j

* − Gi,j−1
* �� .

�15�

During the predictor step �14�, one-sided forward differences
are used in both the x and the y directions. During the cor-
rector step �15�, one-sided backward differences are used in
both directions. The diffusive terms are discretized with sec-
ond order central differences in both predictor and corrector
step. For example, the term �2
 /�x2 is discretized as


 �2


�x2 

i,j

n

�

i+1,j

n − 2
i,j
n + 
i−1,j

n

��x�2 .

The same form is used for the y direction. For the system
�11� and �12�, 
=u ,v ,G, where u=ux and v=uy. The fully
discretized system for the AC method is written in the Ap-
pendixes. The system �11� and �12� is now discretized in the
same way. In order to ensure numerical stability, the time
step suggested in �12� is used:

�t �
0.5�x

c
.

We consider two examples. The first one is the stationary
flow in a lid-driven cavity for Re=400,1000, and 5000. This
example is chosen to demonstrate that the KRLNS equations
capture the correct steady-state behavior. Secondly, we com-
pare the numerical solution with one of known exact tran-
sient solutions of the incompressible Navier-Stokes equation.
This example is chosen to show that the KRLNS equations
capture correctly the time behavior, while the AC method
does not.

A. Steady-state behavior: Flow in a cavity

The lid-driven cavity problem is a classic CFD test for
new methods and numerical algorithms. Let �= �0,1�
� �0,1� be a 2D square cavity, �1 the top boundary, �0 three
other sides and T�0 the simulation time. The initial and
boundary conditions for the AC method are

u��x,y� = �1,0�, �x,y� � �1, t � �0,T� ,

u��x,y� = �0,0�, �x,y� � �0, t � �0,T� ,

u��x,y� = �0,0�, �x,y� � �, t = 0,

P�x,y� = 0, �x,y� � � � �1 � �0, t = 0.

The boundary values for the artificial pressure equation �3�
are taken equal to the values at the adjacent points, i.e.,

P0,j = P1,j, 0 � j � N − 1,

PN−1,j = PN−2,j, 0 � j � N − 1,

Pi,0 = Pi,1, 0 � i � M − 1,

Pi,M−1 = Pi,M−2, 0 � i � M − 1,

where N and M are the numbers of grid points in the x and y
directions, respectively.

For the KRLNS model, the initial and boundary condi-
tions for the fluid velocity are the same as in the AC method,
while for the new pressure equation �12� zero Dirichlet
boundary conditions �DBC�

P = 0, �x,y� � �0 � �1 �16�

and zero Neumann �NBC�

�P

�n
= 0, �x,y� � �0 � �1 �17�

boundary conditions are used �n is an exterior normal to the
boundary�. The realization of the boundary conditions �16�
and �17� is according to the formula �13�.

The problem is solved by both AC and KRLNS methods,
using the same computational grid 256�256. Figure 1
shows the stream functions contours for the cavity flow using
the KRLNS equation. We can see that for Re=400,1000 the
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method captures the center vortex and two smaller vortices
in the right and left bottom corners, and for Re=5000, an
additional upper left corner vortex. Figures 2 and 3 present
the horizontal and vertical velocity profiles at the cavity’s
horizontal and vertical centerlines. Excellent agreement be-
tween AC and KRLNS methods is seen. Thus Figs. 1–3 dem-
onstrate that the KRLNS method captures the correct quan-
titative behavior for the steady-state problem. Tables I–IV
compare locations of the vortex centers for AC, KRLNS and
results available in the literature �13–17�.

It should be noticed that the numerical results depend es-
sentially on the Mach number. Figure 3 shows the velocity
components for Re=5000 and for different values of Ma
�Ma=0.1299, 0.1, 0.05�. With the decrease of the Mach num-
ber, the solution of the KRLNS equations approaches the AC
solution.

B. Transient behavior

In order to demonstrate that the KRLNS equation captures
the correct time behavior, let us compare the numerical so-
lution with the following exact solution �two-dimensional
Taylor-Green vortex flow�:

u�x,y,t� = − 2��ky cos�2�kxx

L
�sin�2�kyy

L
�

�exp�−
4�2k2�t

L2 � ,

v�x,y,t� = 2��kx cos�2�kyy

L
�sin�2�kxx

L
�exp�−

4�2k2�t

L2 � ,

FIG. 1. Streamlines for the cavity flow. Left: Re=400, Ma
=0.01; center: Re=1000, Ma=0.01; right: Re=5000, Ma=0.05.
Grid 256�256.
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FIG. 2. Comparison for the velocity profiles for the Re=400,
1000. Top: Horizontal velocity, U, at x=0.5; bottom: vertical veloc-
ity, V, at y=0.5. Grid 256�256.
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TABLE I. Location of vortex centers in a lid driven cavity flow, Re=400.

Ref.
Primary vortex

�x ,y ,
max�
Lower right vortex
�x ,y ,
min�104�

Lower left vortex
�x ,y ,
min�105�

�13�,
Ma=0.1732

�0.5608,0.6078,0.1121� �0.8902,0.126,−6.19� �0.0549,0.0510,−1.30�

�14� �0.5547,0.6055,0.1139� �0.8906,0.125,−6.42� �0.0508,0.0469,−1.42�
�15�,
Ma=0.1299

�0.5573,0.6049,0.1127� �0.8854,0.122,−6.09� �0.0392,0.0353,−1.2�

�16� �0.5563,0.6000,0.1136� �0.8875,0.119,−6.45� �0.0500,0.0500,−1.46�
Present work,
AC, �=0.01

�0.5608,0.6118,0.1125� �0.8883,0.1294,−6.2� �0.0549,0.0510,−1.0�

Present work, DBC
KRLNS, Ma=0.01

�0.5608,0.6118,0 ,1116� �0.8902,0.1255,−6.2� �0.0549,0.051,−1.0�

Present work, NBC
KRLNS, Ma=0.01

�0.5608,0.6078,0 ,1134� �0.8902,0.1255,−6.6� �0.0588,0.051,−1.0�

TABLE II. Location of vortex centers in a lid driven cavity flow, Re=1000.

Ref.
Primary vortex

�x ,y ,
max�
Lower right vortex
�x ,y ,
min�104�

Lower left vortex
�x ,y ,
min�105�

�13�,
Ma=0.1732

�0.5333,0.5647,0.1178� �0.8667,0.114,−16.9� �0.0902,0.0784,−22.2�

�14� �0.5313,0.5625,0.1179� �0.8594,0.110,−17.5� �0.0859,0.0781,−23.1�
�15�,
Ma=0.1299

�0.5338,0.5675,0.1178� �0.8654,0.115,−16.8� �0.0882,0.0797,−21.8�

�15�,
Ma=0.1732

�0.5338,0.5648,0.1178� �0.8654,0.115,−16.7� �0.0855,0.0797,−21.6�

�16� �0.5438,0.5625,0.1173� �0.8625,0.106,−17.4� �0.0750,0.0813,−22.4�
Present work,
AC, �=0.01

�0.5333,0.5686,0.1172� �0.8667,0.1176,−17� �0.0863,0.0823,−22�

Present work, DBC
KRLNS, Ma=0.01

�0.5333,0.5725,0.1154� �0.8627,0.1137,−18� �0.0863,0.0823,−20�

Present work, NBC
KRLNS, Ma=0.01

�0.5373,0.5686,0 ,1175� �0.8667,0.1137,−18.5� �0.0863,0.0784,−21�

TABLE III. Location of vortex centers in a lid driven cavity flow, Re=5000.

Ref.
Primary vortex

�x ,y ,
max�
Lower right vortex
�x ,y ,
min�104�

Lower left vortex
�x ,y ,
min�105�

�13�
Ma=0.1732

�0.5176,0.5373,0.1214� �0.8078,0.075,−30.3� �0.0784,0.1373,−135�

�14� �0.5117,0.5352,0.1190� �0.8086,0.074,−30.8� �0.0703,0.1367,−136�
�15�,
Ma=0.1299

�0.5175,0.5350,0.1204� �0.8056,0.072,−30.1� �0.0773,0.136,−134�

�16� �0.5125,0.5313,0.0921� �0.8500,0.081,−54.9� �0.0625,0.1563,−167�
Present work,
AC, �=0.1

�0.5176,0.5412,0.1081� �0.8039,0.0784,−31.3� �0.0784,0.1373,−129�

Present work, DBC
KRLNS, Ma=0.05

�0.5176,0.5451,0.1107� �0.7922,0.0824,−32.6� �0.0784,0.1333,−107�
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p�x,y,t� = − �2�2	ky
2 cos�4�kxx

L
� + kx

2 cos�4�kyy

L
��

�exp�−
8�2k2�t

L2 �
on the domain �0,��� �0,�� �L=�� at Re=1. Here k2=kx

2

+ky
2. The following parameters are used: kx=ky =0.5, �

=1 /�, and �=1.
Figures 4 and 5 �top� compare the pressure component for

AC, KRLNS and the exact solution of the INS equation for
the grids 32�32 and 64�64. An excellent agreement be-
tween the pressure component of the numerical solution of
the KRLNS equation and the exact solution of the INS equa-

tion is seen. The AC approach provides us with the oscillat-
ing pressure component.

Figures 4 and 5 �bottom� depict the divergence history for
AC and KRLNS for the grids 32�32 and 64�64. It can be
seen that the ��u� term for the KRLNS model holds at the
zero level, while the divergence in the AC method oscillates.
The calculation is performed at a constant Courant number:
�t /�x=10−3.

The oscillations in the AC solution are due to absence of
a smoothing effect in the model. Such an effect in the
KRLNS is provided by the additional term �proportional to
1 /Re� in Eq. �12�. It should be noted here that the oscillatory
behavior of the AC method shown in Fig. 5 is a general
feature of the method and does not disappear for smaller
values of �. If we decrease the value of delta, then the oscil-
lations are compressed towards t=0 but they still do not
entirely disappear. This behavior is shown in Fig. 6.

Figure 7 demonstrates component-wise comparison of the
velocity profiles at various times vs. analytical sinusoidal
profile.

Notice that in �7� oscillations of divergence of order Ma
on the time scale of order Ma were detected. Figures 4 and 5
�bottom� do not show these oscillations.

V. CONCLUSION

The present study is concerned with the numerical solu-
tions of the KRLNS equation suggested in �6� and its com-

TABLE IV. Location of the upper left vortex centers in a lid
driven cavity flow, Re=5000.

Ref. �x ,y ,
min�103�

�13�, Ma=0.1732 �0.0667,0.9059,−1.40�
�14� �0.0625,0.9102,−1.4564�
Present work, AC, �=0.1 �0.0667,0.9137,−1.31�
Present work, KRLNS, Ma=0.05 �0.0667,0.9137,−1.45�
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FIG. 4. Top: Pressure as a function of time for �=0.0001. Bot-
tom: Divergence as a function of time for �=0.0001. Re=1, Ma
=0.01, and �t=10−4. Grid 32�32.
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parison with the AC method �8�. In spite of the superficial
similarity of the artificial pressure equation �3� and the cor-
responding pressure equation of the AC method �12� there
are at least two significant differences. First, Eq. �12� con-
tains additional dissipation term �proportional to 1 /Re�,
which cannot be neglected, as removing this term will
change a qualitative behavior of the system �see Figs. 4 and
5�. In fact, this term is the main difference of the physical
KRLNS model from the AC model. Secondly, while the
original AC method fails to capture time dynamics correctly,
the current method can do so. This fact is demonstrated by
the example in Sec. IV B.

The flow in a cavity problem is solved in a framework of
the new approach using a simple explicit MacCormack
method. A comparison with the results available from the
literature for this benchmark test indicates that the KRLNS
method is an alternative approach to study motion of incom-
pressible fluids at low Mach numbers.

Finally, in Appendix B we demonstrate that the Jacobian
matrices of fluxes in the KRLNS system have real eigenval-
ues and are diagonalizable. A well known route to numeri-
cally solve such systems is to use characteristics based meth-
ods �see, e.g., �19,20��. One of the recently developed
methods is Numerical Acoustic Relaxation �NAR� method
�18�, which will be considered in our future work.
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APPENDIX A: NUMERICAL METHOD

For the artificial compressibility method we have the fol-
lowing �u=ux, v=uy�.

�1� Predictor step

ui,j
* = ui,j

n − c1��ui+1,j
n �2 − �ui,j

n �2� − c2�ui,j+1
n vi,j+1

n − ui,j
n vi,j

n �

− c1�Pi+1,j
n − Pi,j

n � + c3�ui+1,j
n − 2ui,j

n + ui−1,j
n �

+ c4�ui,j+1
n − 2ui,j

n + ui,j−1
n � , �A1�

vi,j
* = vi,j

n − c1�ui+1,j
n vi+1,j

n − ui,j
n vi,j

n � − c2��vi,j+1
n �2 − �vi,j

n �2�

− c2�Pi,j+1
n − Pi,j

n � + c3�vi+1,j
n − 2vi,j

n + vi−1,j
n �

+ c4�vi,j+1
n − 2vi,j

n + vi,j−1
n � , �A2�

Pi,j
* = Pi,j

n −
1

�
�c1�ui+1,j

n − ui,j
n � + c2�vi,j+1

n − vi,j
n �� . �A3�
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For the KRLNS system �11�–�13�, the flow velocities
equations are discretized in the same way. For the grand
potential equation �12� we have

Gi,j
* = Gi,j

n −
1

Ma2 �c1�ui+1,j
n − ui,j

n � + c2�vi,j+1
n − vi,j

n ��

+ c3�Gi+1,j
n − 2Gi,j

n + Gi−1,j
n � + c4�Gi,j+1

n − 2Gi,j
n + Gi,j−1

n � .

�A4�

�2� Corrector step

ui,j
n+1 = 0.5
ui,j

* + ui,j
n − c1��ui,j

* �2 − �ui−1,j
* �2�

− c2�ui,j
* vi,j

* − ui,j−1
* vi,j−1

* � − c1�Pi,j
* − Pi−1,j

* �

+ c3�ui+1,j
* − 2ui,j

* + ui−1,j
* �

+ c4�ui,j+1
* − 2ui,j

* + ui,j−1
* �� , �A5�

vi,j
n+1 = 0.5
vi,j

* + vi,j
n − c1�ui,j

* vi,j
* − ui−1,j

* vi−1,j
* �

− c2��vi,j
* �2 − �vi,j−1

* �2� − c2�Pi,j
* − Pi,j−1

* �

+ c3�vi+1,j
* − 2vi,j

* + vi−1,j
* �

+ c4�vi,j+1
* − 2vi,j

* + vi,j−1
* �� , �A6�

Pi,j
n+1 = 0.5	Pi,j

* + Pi,j
n −

1

�
�c1�ui,j

* − ui−1,j
* � + c2�vi,j

* − vi,j−1
* ��� .

�A7�

For the KRLNS grand potential equation we have

Gi,j
n+1 = 0.5 * 	Gi,j

* + Gi,j
n −

1

Ma2 �c1�ui,j
* − ui−1,j

* �

+ c2�vi,j
* − vi,j−1

* �� + c3�Gi+1,j
* − 2Gi,j

* + Gi−1,j
* �

+ c4�Gi,j+1
* − 2Gi,j

* + Gi,j−1
* �� , �A8�

where

c1 =
�t

�x
, c2 =

�t

�y
, c3 =

�t

Re��x�2 , c4 =
�t

Re��y�2 .

Notice that we are not provided with boundary conditions for
the grand potential G, but for the pressure P. After the cal-
culation is done for the inner points of the grid by formulas
�A4� and �A8�, the values on the boundary are completed
with the help of formula �13�.

APPENDIX B: CHARACTERISTIC ANALYSIS

In this section we demonstrate that the Jacobian matrices
of fluxes in the KRLNS system have real eigenvalues and are
diagonalizable. Let us rewrite the system �11�–�13� in the
conservative form. For the two-dimensional case we have

�tU + �xF + �yG = S , �B1�

where U ,F ,G ,S are vectors of conservative variables,
fluxes, and source term, respectively:

U = �G
ux

uy
�, F = �

1

Ma2ux

ux
2 + P

uxuy

�, G = �
1

Ma2uy

uxuy

uy
2 + P

� ,

S = �
1

Re
����G

1

Re
����ux

1

Re
����uy

� . �B2�

The Jacobian matrices for fluxes F ,G are

JF = �0
1

Ma2 0

1 3ux uy

0 uy ux

�, JG = �0 0
1

Ma2

0 uy ux

1 ux 3uy

� . �B3�

Characteristic equation of the matrix JF is

	3 − 4ux	
2 + 	�3ux

2 − uy
2 −

1

Ma2� +
ux

Ma2 = 0.

Discriminant of this equation is D= p3 /27+q2 /4, where

p = − �7

3
ux

2 + uy
2 +

1

Ma2�, q = − ux

9 + 4 Ma2�5ux
2 + 9uy

2�
27 Ma2 .

It is easy to verify that D�0. This means that the character-
istic equation has three real nonequal roots. The roots can be
written as

	1 =
4

3
ux + 2��p�

3
cos

�

3
, �B4�

	2 =
4

3
ux − 2��p�

3
cos

� + �

3
, �B5�

	3 =
4

3
ux − 2��p�

3
cos

� − �

3
, �B6�

where

� = arccos�−
q

2��p�3

27
� .

The roots of the characteristic equation for the matrix JG can
be found in a similar way. Thus the matrices JF and JG have
three real nondegenerate eigenvalues and therefore are diag-
onalizable.
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